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Abstract 
The paper examines the scientific and applied significance of fossil elasmobranch teeth as a 

key source of evidence for systematics, phylogenetics, and evolutionary morphology. The review 
section shows that elasmobranch teeth (modified placoid scales associated with cartilaginous jaws) 
are highly species-specific and are therefore widely used for taxonomic identification, including 
through diagnostic keys and standardized protocols for collection and description. It is emphasized 
that, alongside dermal denticles (which lie outside the scope of ichthyodontology), teeth provide 
morphometric indicators relevant not only to elasmobranch systematics but also to broader 
questions in evolutionary biology and vertebrate comparative anatomy. In the context of 
phylogenetic reconstructions, the special role of “paleoodontological” evidence is noted: from the 
classic works of the mid-20th century to modern digital studies, dental characters remain among 
the most informative “direct witnesses” of evolutionary transformations in sharks and their 
relatives. A current trend toward formalized processing of morphological data is discussed 
separately: to analyze patterns of morphogenesis and tooth variability in fossil and extant forms, 
multivariate statistical approaches are used – primarily PCA to reduce dimensionality and noise in 
complex character datasets, as well as discriminant analysis for taxonomic separation and for 
testing classification hypotheses. A major limitation of such reconstructions is identified as 
taphonomic damage and surface degradation of teeth, which reduce the accuracy of recognizing 
diagnostic characters and therefore require explicit consideration of taphonomy and stratigraphic 
context when interpreting morphology. The experimental section demonstrates that, for these 
purposes, it is possible to automate and re-digitize relatively old 1980s scanning electron 
microscopes with modest metrological performance and to obtain images comparable to those 
produced by modern compact electron microscopes at magnifications (useful magnification) from 
several thousand up to 5,000×, with an upper digitizable limit (due to mechanical instability and 
image blur) of up to 10,000×. A series of illustrative SEM micrographs of elasmobranch tooth 
microstructure is presented, with increasing magnification from 35× to 10,000×. For the lowest-
magnification “electron macrophotography,” the possibilities of colorization/digital pseudo-color 
(pseudo-color mode) are shown, yielding coloration comparable to the specimen’s appearance 
under visual inspection and macrophotography. This approach is currently implemented using 
artificial intelligence/machine learning tools. 
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1. Введение 
1.1. Систематическое и филогенетическое (эволюционное) значение 

морфологических признаков зубов ископаемых эласмобранхий. 
Общеизвестно, что морфология зубов эласмобранхий – видоизмененных плакоидных 

чешуй, расположенных на хрящевых челюстях – имеет предельно большое значение в их 
таксономии и видовой идентификации; существуют идентификационные ключи для 
определения видов эласмобранхий на основе морфологических характеристик их зубов 
(Guinot et al., 2018; Pollerspöck, Straube, 2018; Pollerspöck, Straube, 2020). Наряду с 
дентикулами (которые, несмотря на название, не имеют ничего общего с 
ихтиоодонтологией, а представляют собой зубообразные чешуйки, покрывающие кожу акул 
(Atkinson, Collin, 2012; Sibert et al., 2017)), они являются видоспецифичными источниками 
морфометрических индикаторов и элементами таксономических ключей, имеющими 
собственные протоколы сбора, коллекционирования, подготовки и описания образцов 
(Mollen, 2019). Можно говорить об общебиологической эволюционной ценности зубов 
эласмобранхий в филогенетике не только эласмобранхий, но и в целом позвоночных, в том 
числе рептилий и млекопитающих (Ciampaglio et al., 2005; Berio, Debiais‐Thibaud, 2021). 

С точки зрения филогенетического/эволюционного анализа (включая эволюционную 
биологию развития, прогнозирующую возможные формы морфогенеза), вклад 
палеоодонтологии в филогенетическую реконструкцию, в особенности филогенетическую 
реконструкцию эласмобранхий сложно переоценить. Задавая вопрос «Что есть 
эласмобранхии?», с точки зрения эволюционной палеонтологии, согласно работе (Maisey, 
2012), мы неизбежно отвечаем на него с фокусом на прямых свидетелях эволюционных 
преобразований – зубах эласмобранхий (of fossil elasmobranchs have focused on teeth). 
Начиная с 1930-х гг. зубы эласмобранхий особо широко используются в анализе их 
эволюционных отношений (Moy‐Thomas, 1938, 1939; Schaeffer, Williams, 1977; Janvier, Pradel, 
2015). В настоящее время эти работы полностью ведутся в цифровом формате. Выявление 
гомологий и аналогий в филогении эласмобранхий по поверхности их зубов является 
классической тематикой (Gillis, Donoghue, 2007), опосредованной применением методов 
математической морфологии и морфологических ключей в кладистике.  

Паттернинг зубов у ранних акул хорошо прослеживается в ходе эволюции их зубов 
(Maisey et al., 2014). Сейчас в данных целях, а также в целях таксономической 
идентификации с учётом филогении зубов акул/ископаемых акул по их зубам активно 
используется метод главных компонент (principal component analysis, PCA), который 
преобразует коррелированные переменные в новый набор некоррелированных переменных, 
называемых главными компонентами, что позволяет упростить сложные наборы данных, 
сохраняя при этом наиболее важную информацию (дисперсию) и уменьшая шум, что делает 
данные более интерпретируемыми; вместе с ним используется дискриминантный анализ 
(Marramà, Kriwet, 2017).  

Препятствием к точному определению филогении являются тафономические 
разрушения поверхности зубов эласмобранхий (Boyne, 1970). Однако существуют подходы, 
учитывающие тафономию и биостратиграфию в данных исследованиях. Рассмотрим эти 
проблемы подробнее. 

1.2. Биогеохимическое, биостратиграфическое, палеоэкологическое и 
палеобиогеографическое значение зубов ископаемых эласмобранхий 

Исследование зубов ископаемых эласмобранхий имеет биостратиграфическое, 
палеоэкологическое и палеобиогеографическое значение, завязанное на их филогению 
(Maisey, 1984; Lewy, Cappetta, 1989; Marsili, 2008). Биоминерализация зубов эласмобранхий 
и микротафономия их гистологических паттернов выраженно реагирует на климатические, 
долгосрочные метеорологические, биогеохимические и общеэкологические изменения 
(Jambura et al., 2018; Feichtinger et al., 2021). Своеобразным связующим («прокси») между 
параметрами зубов эласмобранхий и условиями среды, в которой они обитали, может 
считаться изотопия их состава (Vennemann et al., 2001), причём не только по органогенам 
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(Holmes et al., 2005), но и, прежде всего, по кальцию, участвующему в процессах 
биоминерализации (Akhtar et al., 2020; Akhtar, 2021; Assemat et al., 2024) (хотя, строго 
говоря, исследования зубов эласмобранхий начались в 19 веке, когда ни изотопии как науки, 
ни масс-спектрографов типа первых, разработанных Астоном, не существовало (Cope, 1884; 
Tomes, 1898)). Изотопия биоминерализации (в том числе зубов эласмобранхий) может 
считаться полностью определяемой метаболическими сетями и гистоспецифичной (Hussey 
et al., 2012; Díaz‐Delgado et al., 2025). Возможности позиционно-чувствительного масс-
спектрометрического имэджинга и исследования зубов эласмобранхий дают возможность 
установить к каким формам биоминерализации можно привязать те или иные пути 
биологического фракционирования изотопов и каким тканям соответствуют эти пути.  

В 1980-е гг. единственными доступными высокоуровневыми методами исследования 
гомологии различных структур в эволюции эласмобранхий с позиционной 
чувствительностью были иммунохимические методы (Samuel et al., 1987). Инструменты 
масс-спектрометрического картирования типа LAMMA не давали нужного разрешения для 
изотопного гистологического анализа на должном уровне – на уровне клеточной 
дифференцировки (Miyake et al., 1999).  

Гистогенез с последующей биоминерализацией при формировании зубов 
эласмобранхий отслеживается с позиционной чувствительностью по элементному составу 
методами рентгеновской (волнодисперсионной или энергодисперсонной) спектрометрии и 
современными методами масс-спектрометрического имэджинга (Schnetz et al., 2016). Оба типа 
методов являются безметочными и не вносящими изменений в состав образца до анализа. 

1.3. Процессы биоминерализации и фоссилизации зубов эласмобранхий, 
включая механизмы замещения и вторичные тафономические эффекты 

Очевидно, что любые методы анализа, используемые для исследований твердого тела, 
хороши для анализа продуктов биоминерализации и последующенй адекватной 
фоссилизации зубов, не исключая исследование механизмов замещения и 
рекристаллизации, если таковые имели место. Наверное, не следует подробно 
останавливаться на том, что распределение разных химических элементов в зубах (в том 
числе в enameloid-е – эмалеподобном слое) ископаемых эласмобранхий являлось предметом 
пристального интереса, начиная с появления первых рентгеноспектральных анализаторов 
(волнодисперсионных и энергодисперсионных) и специализированных микрозондов 
(Cameca, Camebax), а также установок исследования катодолюминесценции на основе 
растровых электронных микроскопов и разработки сравнительно доступных Оже-
спектрометров на подобной платформе. Однако интерес к данной проблематике возник 
существенно раньше (и решался в тот ранний период с использованием поляризационной 
микроскопии, в том числе с опак-/ультраопак- иллюминаторами). Сравнительно 
релевантные современному уровню базовых знаний статьи по распределению минералов и 
паттернов минерализации в зубах эласмобранхий известны с 1970-х гг. (в частности по 
enameloid-у (Fosse et al., 1974)) и становятся тривиально общераспространенными с                 
1980-х гг. (в частности, по enameloid-у (Bendix-Almgreen, 1983; Kemp, 1985; Prostak, Skobe, 
1988). В настоящее время работы по распределению минералов и паттернов 
биоминерализации (и фосилизационного замещения) в зубах эласмобранхий являются 
стандартным и неизбежным звеном их исследования, причём работы с скрупулёзным 
вниманием к enameloid-у до сих пор составляют существенную их часть (Sasagawa, 2002; 
Enault et al., 2015; Underwood et al., 2015).  

Следует указать на причины, заставляющие нас достаточно подробно останавливаться 
на enameloid-е. «Эмалоид» (enameloid), также известный под названием «дуродентиум», 
несомненно, является гомологом (или аналогом) эмали млекопитающих, однако по 
минерализации она качественно отличает с от неё – в отличие от гидроксиапатита 
млекопитающих, дуродентиум состоит из фторапатита и формируется за счёт эмиссии 
соответствующих неорганических ионов от клеток эпителия при генерации коллагенового 
матрикса одонтобластами. То есть, в отличие от эмали зуба млекопитающих, эмалоид/ 
enameloid – продукт кооперативной активности эпителиальных и мезенхимальных клеток 
(Shellis, Miles, 1976; Daculsi, Kerebel, 1980; Sasagawa, 1998; Suga et al., 1992; Prostak, Seifert, 
1993; Gillis, Donoghue, 2007; Kawasaki, 2013; Kawasaki et al., 2021; McCormack et al., 2024).  
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Вполне очевидно, что для исследования подобной эмали структуры необходим арсенал 
методов электронной микроскопии и рентгеновского, микрозондового анализа. Особенно это 
необходимо для дифференциального анализа процессов биоминерализации и замещения, 
в т. ч. в сравнительной палеоморфологии и тафономии, так как общеизвестно, что в зубах 
четвероногих (надкласса челюстноротых из группы костных позвоночных) дентин 
минерализуется ранее эмали, но в случае enameloid-а минерализация происходит, предшествуя 
дентину в зубах рыб. В то же время, у ряда рыб можно найти одновременно и enameloid, и 
настоящую эмаль (что, кстати, является систематическим/кладистическим признаком). 

Поэтому наличие инструментария, позволяющего характеризовать эмаль и enameloid, 
является существенным вкладом в систематику и «тафономическую хемосистематику» рыб, 
реализуемую с привлечением инструментального морфологического исследования их зубов, 
в том числе – с учётом онтогенетической гетеродонтии (Shimada, 2002; Cullen, Marshall, 
2019). В настоящее время для данных работ (в отличие от ранних 1990-х гг. (Sasagawa, Akai, 
1992) можно использовать как расширенные техники кристаллографии (в обычных работах 
ограничивающейся стандартным рентгенодифрактографическим анализом (Kesmez et al., 
2004)), так и методы рентгеновской микротомографии, которые позволяют одновременно 
характеризовать саму минеральную структуру зубов и одновременно прослеживать 
(визуализируя в колокализации) пути её васкуляризации (Ivanov, Nilov, 2016; Jambura et 
al., 2019). 

1.4. Физиология и экофизиология эласмобранхий в контексте анализа их 
зубов 

В аспекте физиологии и экофизиологии эласмобранхий ископаемые зубы 
эласмобранхий можно применять в реконструкции: 

– Механизмов питания (Moss, 1977; Frazzetta, 1994), включая ранние механизмы 
всасывающего питания (Coates et al., 2019) (всасывающее питание у различных рыб – способ 
добычи пищи, при котором рыба резко открывает рот, создавая отрицательное давление, 
засасывая воду с добычей, в т.ч. мелкими беспозвоночными, планктоном, личинками, 
мелкой рыбой), а затем выплевывая воду через жабры, оставляя пищу в глотке); 

– Функциональной анатомии и биомеханики питания (Wilga, Ferry, 2015); 
– Эволюции способов захвата жертвы (Motta, Huber, 2004); 
– Экологии питания (Wilga et al., 2007; Cortés et al., 2008; Paredes-Aliaga et al., 2024); 
– Процессов резорбции зубов – продуктов биоминерализации – у эласмобранхий 

(Böttcher, 2024); 
– Соотношения размеров тела, рациона и параметров зубов древних эласмобранхий, 

в том числе в зависимости от сезона (Shimada, 2002; Sommerville et al., 2011; McLennan, 
2018); 

– Влияние состава океана на биоминерализацию и сохранность зубов эласмобранхий 
(Leung et al., 2022); 

– Онтогенетическую пластичность и степень филэмбриогенетической рекапитуляции 
превалирующих паттернов у эласмбранхий (и стабильность эволюционных трендов вплоть 
до современности) (Underwood et al., 2016; Meredith Smith et al., 2019; Dillon, Pimiento, 2025); 

– Древних микробиомов эласмобранхий и их роли в физиологии последних (Perry et 
al., 2021). 

1.5. Биогеографическое разнообразие местонахождений зубов ископаемых 
эласмобранхий 

Принципиальная особенность, обеспечивающая заинтересованность биогеографов в 
изучении ископаемых зубов акул, заключается в повсеместной распространенности их на 
территории пространственно-разнесенных областях, странах и на разных континентах:  

1. В Австралии и Новой Зеландии (Daymond, 1999; Rees et al., 2024), а также на 
островах Малайского архипелага (напр., Борнео), известного в западной литературе под 
названием Insulindia или Indo-Australian Archipelago (Kocsis, 2024); 

2. В Азии, в частности в: 
2.1. Индии (Prasad et al., 2004; Prasad et al., 2017). 
2.2. Тайване (Lin et al., 2022). 
2.3. Тайланде (Cappetta et al., 2006). 
2.4. Южной Корее (Yun, 2021). 
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3. В Африке (как Северной (Adnet et al., 1990; Boulemia, Adnet, 2023), так и Южной 
(Smale, 2005)). 

4. В Антарктике и прилежащих островах (типа острова Сеймур, известного также под 
названием Симур, находящегося недалеко от полуострова Тринити, северной оконечности 
Антарктического полуострова (Long, 1992). 

5. В Европе (Leidner, Thies, 1999), в частности в: 
5.1. Австрии (Feichtinger et al., 2025). 
5.2. Бельгии (Iserbyt, De Schutter, 2012). 
5.3. Великобритании (Paton, 1993). 
5.4. Германии (Höltke et al., 2023). 
5.5. Западный Казахстан (общеизвестно, что большая часть территории относится к 

Центральной Азии, но некоторые части, включая Западно-Казахстанскую область, 
находятся в Европе, делая Казахстан трансконтинентальным государством) (Radwański, 
Marcinowski, 1996) 

5.6. Польше (Schultz, 1977). 
5.7. Европейской части России (Mertiniene, 1995). 
5.8. Украине (Sokolskyi, Guinot, 2021). 
6. Северной Америке, в частности: 
6.1. Канаде (Beavan, Russell, 1999; Mutter et al., 2007). 
6.2. США (Schubert, 2013; Shimada et al., 2015; Swinehart et al., 2020). 
7. Южной Америке/Латинской Америке, в частности: 
7.1. Аргентине (Johns et al., 2014). 
7.2. Перу (Landini et al., 2017). 
7.3. Чили (Suaez et al., 2004). 
Исходя из изложенного, очевидно, что коллекционное сохранение (или 

«музеефикация») зубов ископаемых эласмобранхий и их мультипараметрическая 
каталогизация с целью последующего исследования новыми и классическими методами 
микроскопии и микроанализа представляет собой актуальную задачу, поскольку, в широком 
контексте, каждый из таких образцов зубов эласмобранхий является кладезем 
не(до)оцененной информации (Marsili, 2007; Andreev, Motchurova-Dekova, 2010; Clayton et 
al., 2013).  

Однако не все музеи, особенно провинциальные и в развивающихся странах имеют 
современные микроскопы, позволяющие работать над исследованием подобных структур на 
микроскопическом уровне. В особенности это утверждение верно для электронных 
микроскопов. 

 
2. Методы 
2.1. Потребность в доступных методах исследования. 
Исходя из изложенного очевидно, что необходимо повсеместное внедрение методов, 

обеспечивающих прецизионное микроскопическое микроструктурное исследование зубов 
эласмобранхий. К таковым методам относятся методы электронной микроскопии, 
микрозондового анализа, катодолюминесценции в колонне СЭМ под пучком, электронной и 
рентгеновской микротомографии и т.д. (см. выше). Но они являются дорогостоящими и 
экзотическими, а в распоряжении многих лабораторий имеются старые электронные 
микроскопы (в особенности – на территории быв. СССР/СНГ), которые достаточны для 
визуального контроля образцов, но не имеют оцифровки. С одной стороны, они удобны для 
просмотра зубов ископаемых эласмобранхий, так как их увеличения и разрешения с 
избытком хватает для этих целей (хотя не хватает для анализа ультраструктуры клекточной 
стенки или наноструктуры кристаллов замещения и наноминералогии метаморфизма и 
метасоматоза в процессах фоссилизации). С другой стороны, необходимо создание средств 
автоматизации, которые сделали бы их даже при сохранении слабых (и устаревающих) 
технических параметров релевантными в задачах «палеоодонтологических» исследований. 

2.2. Выбор инструмента для автоматизации и фотосистемы автоматизации 
Jeol JSM-T330A – сканирующий электронный микроскоп конца 1980-х годов, до сих 

пор обладающий приемлемыми характеристиками. К сожалению, он рассчитан на 
документирование результатов с помощью плёночных фотоаппаратов, что в наши дни 
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неудобно. Поэтому мы доработали его, использовав цифровой фотоаппарат Canon A590IS, 
CHDK, кабель синхронизации затвора и переходник, распечатанный на 3D принтере. 
Подробнее процесс описан ниже. 

Нами был использован фотоаппарат Canon A590IS (прошивка 100e), вместо него 
возможно использовать многие фотоаппараты фирмы Canon. Фотоаппарат должен 
поддерживать CHDK (Canon Hacker’s Development Kit — резидентная программа для 
компактных и зеркальных цифровых фотоаппаратов фирмы Canon, базирующихся на 
процессорах DIGIC) (CHDK, 2025). К достоинствам Canon A590IS следует отнести 
возможность одновременного подключения USB кабеля, блока питания и кабеля передачи 
аналогового видеосигнала. Использовать фотоаппарат, не имеющий дополнительного входа 
питания и видеовыхода возможно, но не столь удобно. 

2.3. Протокол автоматизации с использованием CHDK – практические 
рекомендации для пользователя. 

2.3.1. Во-первых, требуется установить CHDK на фотоаппарат.  
Для этого желательно использовать SD-карту объёмом не более 4 ГБ. Установку CHDK 

проще всего произвести так: 
1. Подготовьте компьютер, подключённый к интернету, SD-карту, которая будет 

отформатирована, и любую фотографию, сделанную фотоаппаратом. 
2. Установите на компьютере Java, если она ещё не установлена: 

https://java.com/ru/download/ 
3. Скачайте программу-установщик CHDK “STICK” по следующей ссылке: 

https://www.softpedia.com/get/Multimedia/Graphic/Digital-Photo-Tools/Mitchell-STICK.shtml 
4. Распакуйте STICK, запустите файл, соответствующий вашей ОС. Для ОС Windows 

требуется запустить файл stick.bat или stick.cmd (один из них может не приводить к 
успешной установке CHDK, в таком случае нужно использовать другой) с правами 
администратора. 

5. Перетащите мышью фотографию в красный прямоугольник программы или 
выберите путь к файлу кнопкой Browse (в некоторых случаях может сработать только один 
метод). Затем следуйте подсказкам программы. В случае, если вы используете SD-карту 
объёмом более 4 GB, STICK может не справиться с её подготовкой, в таком случае можно 
выбрать карту меньшего объёма или подготовить карту самостоятельно, по следующей 
инструкции: http://chdk.clan.su/publ/1-1-0-7 

6. После завершения подготовки переведите флажок на карте в положение Lock.  
2.3.2. Во-вторых, требуется настроить CHDK: 
1. Нажмите на фотоаппарате <Print>, <Menu>. 
2. Вы окажетесь в меню CHDK. Нажатием <Set> войдите в раздел 

<Enhanced photo operations>. 
3. С помощью кнопок <Set>, <Up>, <Down> установите следующие параметры: 
a. Disable overrides – No 
b. Override TV type – long exp 
c. Long exp value – введите сюда выдержку, требуемую вашим микроскопом (в случае 

Jeol JSM-T330A – 38 секунд). 
d. Override AV, Override ISO, Subj dist – тут вы можете выставить диафрагму, ISO и 

фокусное расстояние фотоаппарата. Мы используем значения «20, 12, 250» 
e. При выставлении значений меню, описанных в предыдущих двух пунктах, слева от 

значений должны появиться галочки, подтверждающие активность введённых значений. 
f. Disable overrides on start – снять галочку. Этот пункт заставляет CHDK сохранить 

введённые значения при выключении фотоаппарата. 
4. Дважды нажав <Menu>, вернитесь в основное меню, и с помощью <Set>, <Up>, 

<Down> перейдите в раздел «CHDK settings», в подраздел «Remote parameters». 
5. Установите «Enable remote», «Switch type – one push», «Control mode – normal». 
6. Нажмите на фотоаппарате <Menu>,  <Print>. 
2.3.3. В-третьих, следует создать линию синхронизации. Для синхронизации 

используется импульс напряжением в 3-5В и током в несколько миллиампер, подаваемый 
по линиям питания USB-входа фотоаппарата со стандартной полярностью. Появление 
сигнала эквивалентно частичному нажатию на кнопку фотографирования, исчезновение 
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сигнала эквивалентно полному нажатию на кнопку (началу фотографирования). При 
создании линии синхронизации в связке Jeol JSM-T330A – Canon A590IS можно поступить 
следующим образом: 

1. Взять кабель USB-A – mini-USB-B. 
2. Отрезать разъём USB-A, освободить, зачистить и залудить чёрный и красный 

провода, белый и зелёный провода можно отрезать. 
3. Снять заглушку на правой части передней панели микроскопа и отвинтить два 

винта, поддерживающих полосу с кнопкой <Shutter>. 
4. Найти на ближайшей к кнопке Shutter плате линии земли и питания (для этого 

посмотрите на pinout любой из микросхем; земля обозначена как Gnd, питание – Vcc ). 
5. Кнопка <Shutter> имеет две группы переключающих контактов, одна из которых 

не используется. Подпаяйте к неиспользуемой нормальноразомкнутой паре контактов 
красный провод кабеля USB и линию питания, найденную в предыдущем пункте. 

6. Чёрный провод припаяйте к найденной линии земли. 
7. Соберите микроскоп. 
8. Теперь при подключении USB кабеля к фотоаппарату и нажатию на кнопку 

<Shutter> будет автоматически начинаться съёмка. 
2.3.4. В-четвёртых, требуется переходник для оптического подключения фотоаппарата 

к экрану микроскопа. Его параметры зависят от используемой системы, для случая связки 
Jeol JSM-T330A – Canon A590IS была создана следующая модель (см. Рисунок 1): 
https://www.tinkercad.com/things/2i7MgsxqgKt-sem 

 

 
 

  
 
Рис. 1. Переходник для оптического подключения фотоаппарата к экрану микроскопа. 
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Можно также улучшить обзор маленького экрана растрового микроскопа, подключив к 
фотоаппарату телевизор с аналоговым видеовходом (через кабель AVC-ВС300, STV-250N 
или стандартный камкордерный кабель, см. схему) или входом Scart (через тот же кабель и 
переходник «Видео-Scart»). 

 

 
 
Рис. 2. Классический способ подключения к внешнему телемонитору переходника STV-250N 
 

В итоге всех вышеперечисленных мероприятий создаётся система, выглядящая как это 
показано на Рисунках 3а, 3б. 

 

 
 
Рис. 3а. Общий вид переходника с фотоаппаратом, расположенного и закрепленного 
на мониторе сканирующего электронного микроскопа 

2.4. Последовательность действий оператора. Процесс фотографирования  
1. Настройтесь на изображение, как обычно. 
2. Установите минимальный Spot size, настройте яркость и контрастность. 
3. Настройте время экспозиции кадра (в случае Jeol JSM-T330A – нажмите клавишу 

«Qucik» слева от «Shutter»). 
4. Закройте крышку фотодокументатора. Включите фотоаппарат. В случае Canon 

A590IS, фотоаппарат должен быть в режиме «M», и требуется выбрать ручной фокус. 
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5. Для Jeol JSM-T330A имеет смысл добиться гашения послесвечения экрана. Для 
этого опустите клавишу «Slow 1», не отпуская её, подождите 3-4 секунды, опустите клавишу 
«Shutter», отпустите клавишу «Slow 1», после этого отпустите клавишу «Shutter». 

6. Если всё сделано правильно, фотоаппарат сделает кадр с экрана микроскопа за 
время экспозиции, затем за то же время сделает темновой кадр, вычтет второй из первого, 
и запишет его на SD-карту. 

7. Полученную серию фотографий удобно обрабатывать программой Irfanview в 
режиме «File → Batch conversion/rename → Advanced». 
 

 
 
Рис. 3б. Система с внешним телемонитором в процессе фотографирования с экрана СЭМ 

 
2.5. Размещение образцов 
Образцы размещаются на вращающемся столике так, как это показано на Рисунке 4а 

(вид сверху) и Рисунке 4б (вид сбоку). 
 

 
а                                                                             б 
 
Рис. 4. Размещение образцов на вращающемся столике электронного микроскопа. 
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3. Результаты 
Результаты – электронные микрофотографии изображений зубов ископаемых 

эласмобранхий при разных увеличениях представлены на сериях изображений ниже: 
– Рисунок 5. Общий вид зуба при 35х, масштабная линейка/скейлбар – 500 мкм. 

Ускоряющее напряжение – 5 кВ. На рисунке (а) показана исходная микрофотография, на 
рисунке (б) её колоризация с использованием средств искусственного интеллекта. 

– Рисунок 6. Тот же образец. Увеличение 200х, скейлбар – 100 мкм, ускоряющее 
напряжение – 5 кВ. 

– Рисунок 7. Тот же образец. Увеличение 750х, скейлбар – 10 мкм, ускоряющее 
напряжение – 5 кВ. 

– Рисунок 8: Тот же образец. Увеличение 1 500х, скейлбар – 10 мкм, ускоряющее 
напряжение – 5 кВ. 

– Рисунок 9: Тот же образец. Увеличение 5 000 х, ускоряющее напряжение – 5 кВ. 
– Рисунок 10: Тот же образец. Увеличение 10 000 х, ускоряющее напряжение – 5 кВ. 
 

 
a 
 

 
б 
Рис. 5. Общий вид зуба при увеличении 35х (а – исходная микрофотография; 
б – её колоризация с использованием средств искусственного интеллекта), 
масштабная линейка/ скейлбар – 500 мкм. Ускоряющее напряжение – 5 кВ 
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Можно видеть, что в диапазоне от до 35 х («электронная макрофотография») до 
5 000 х увеличения все микроструктуры визуализируются достаточно хорошо, а на границе 
между 5 000 х и 10 000 х начинается размывание изображения, довольно сильно мешающее 
качественной визуализации на микрофотографии с 10 000 х. В то же время, когда очевидны 
причины размытия, связанные с нестабильностью по току, механическими вибрациями и 
т.д., нестабильности могут быть устранены (но этот вопрос не входит в предмет интереса, 
описываемый в настоящей статье, а для палеонтолога, работавшего с оптическим 
микроскопом, 5 000 х – также довольно существенный прогресс в понимании 
микроархитектуры ископаемого образца). 

 

 
 
Рис. 6. Тот же образец. Увеличение 200х, скейлбар – 100 мкм, ускоряющее напряжение – 5 кВ 

 

 
 
Рис. 7. Тот же образец. Увеличение 750х, скейлбар – 10 мкм, ускоряющее напряжение – 5 кВ 
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Рис. 8. Тот же образец. Увеличение 1 500х, скейлбар – 10 мкм, ускоряющее напряжение – 5 кВ 
 

 
 
Рис. 9. Тот же образец. Увеличение 5 000 х, ускоряющее напряжение – 5 кВ 
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Рис. 10. Тот же образец. Увеличение 10 000 х, ускоряющее напряжение – 5 кВ 

 
4. Заключение 
В статье рассматривается научная и прикладная значимость зубов ископаемых 

эласмобранхий как ключевого источника данных для систематики, филогенетики и 
эволюционной морфологии. В обзорной части показано, что зубы эласмобранхий 
(видоизменённые плакоидные чешуи, связанные с хрящевыми челюстями) обладают 
высокой видоспецифичностью и потому широко используются в таксономической 
идентификации, включая применение диагностических ключей и стандартизованных 
протоколов сбора и описания. Подчёркивается, что наряду с кожными дентикулами 
(не относящимися к ихтиоодонтологии) зубы дают морфометрические индикаторы, 
релевантные не только для систематики эласмобранхий, но и для более широких задач 
эволюционной биологии и сравнительной анатомии позвоночных. В контексте 
филогенетических реконструкций отмечается особая роль «палеоодонтологических» 
данных: начиная с классических работ середины XX века и вплоть до современных 
цифровых исследований, именно зубные признаки остаются одним из наиболее 
информативных «прямых свидетелей» эволюционных преобразований у акул и их 
родственников. Отдельно обсуждается современный тренд к формализованной обработке 
морфологических данных: для анализа паттернов морфогенеза и вариабельности зубов у 
ископаемых и современных форм применяются методы многомерной статистики, прежде 
всего PCA как способ уменьшения размерности и шумов в сложных наборах признаков, 
а также дискриминантный анализ для таксономического разделения и проверки 
классификационных гипотез. Существенным ограничением этих реконструкций названы 
тафономические повреждения и деградация поверхности зубов, снижающие точность 
распознавания диагностических признаков, что требует явного учёта тафономии и 
стратиграфического контекста при интерпретации морфологии.  

Тем самым эта статья формулирует рамку для комплексного подхода, в котором 
морфологическая систематика и филогенетика зубов эласмобранхий сопрягаются с оценкой 
сохранности и микроморфологических критериев/дескрипторов, получаемых методами 
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электронной микроскопии, что должно повысить надёжность идентификаций и 
эволюционных выводов при работе с ископаемым материалом. В контексте настоящей 
работы также принципиально, что геохимическое картирование должно быть SEM-
навигационным. Это снижает риск артефактов – продуктов ошибочного приписывания 
тафономических или диагенетических градиентов физиологии и позволяет корректно 
сравнивать зубы из разных палеобассейнов, осадочных фаций и климатических режимов. 

В экспериментальной части показано, что можно для этих целей автоматизировать и 
вновь оцифровать достаточно старые сканирующие электронные микроскопы 1980-х гг. 
с невысокими метрологическими характеристиками и получать на них изображения на 
уровне достаточно современных компактных электронных микроскопов с увеличением 
(полезным увеличением) от нескольких тысяч до 5 000 крат и с предельным выводимым на 
оцифровку (в силу механической нестабильности и размытия изображения) до 10 000 крат. 
Приведен ряд иллюстративных электронных микрофотографий микроструктуры зубов 
эласмобранхий с нарастающим увеличением от 35х до 10 000х. Для минимальной по 
увеличению «электронной макрофотографии» показаны возможности колоризации/ 
создания цифрового псевдоцвета (pseudo-color mode), сопоставимого с цветом образца в 
условиях визуального наблюдения и макрофотографии. Этот подход реализуется сейчас с 
использованием средств искусственного интеллекта/машинного обучения. 
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филогенетики и эволюционной морфологии. В обзорной части показано, что зубы 
эласмобранхий (видоизменённые плакоидные чешуи, связанные с хрящевыми челюстями) 
обладают высокой видоспецифичностью и потому широко используются в таксономической 
идентификации, включая применение диагностических ключей и стандартизованных 
протоколов сбора и описания. Подчёркивается, что наряду с кожными дентикулами 
(не относящимися к ихтиоодонтологии) зубы дают морфометрические индикаторы, 
релевантные не только для систематики эласмобранхий, но и для более широких задач 
эволюционной биологии и сравнительной анатомии позвоночных. В контексте 
филогенетических реконструкций отмечается особая роль «палеоодонтологических» 
данных: начиная с классических работ середины XX века и вплоть до современных 
цифровых исследований, именно зубные признаки остаются одним из наиболее 
информативных «прямых свидетелей» эволюционных преобразований у акул и их 
родственников. Отдельно обсуждается современный тренд к формализованной обработке 
морфологических данных: для анализа паттернов морфогенеза и вариабельности зубов у 
ископаемых и современных форм применяются методы многомерной статистики, прежде 
всего PCA как способ уменьшения размерности и шумов в сложных наборах признаков, 
а также дискриминантный анализ для таксономического разделения и проверки 
классификационных гипотез. Существенным ограничением этих реконструкций названы 
тафономические повреждения и деградация поверхности зубов, снижающие точность 
распознавания диагностических признаков, что требует явного учёта тафономии и 
стратиграфического контекста при интерпретации морфологии. В экспериментальной части 
показано, что можно для этих целей автоматизировать и вновь оцифровать достаточно 
старые сканирующие электронные микроскопы 1980-х гг. с невысокими метрологическими 
характеристиками и получать на них изображения на уровне достаточно современных 
компактных электронных микроскопов с увеличением (полезным увеличением) от 
нескольких тысяч до 5 000 крат и с предельным выводимым на оцифровку (в силу 
механической нестабильности и размытия изображения) до 10 000 крат. Приведен ряд 
иллюстративных электронных микрофотографий микроструктуры зубов эласмобранхий с 
нарастающим увеличением от 35х до 10 000х. Для минимальной по увеличению 
«электронной макрофотографии» показаны возможности колоризации/создания 
цифрового псевдоцвета (pseudo-color mode), сопоставимого с цветом образца в условиях 
визуального наблюдения и макрофотографии. Этот подход реализуется сейчас с 
использованием средств искусственного интеллекта/машинного обучения. 

Ключевые слова: фоссилизация, эласмобранхии, диагенез, минерализация, эмалоид, 
сканирующая электронная микроскопия, микрозондовый анализ, волнодисперсионный 
рентгеновский спектрометр, энергодисперсионный рентгеновский спектрометр, детектор 
обратно отраженных электронов (детектор обратно расссеянных электронов). 
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